skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pierotich, Lana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Understanding the mechanics linking cortical folding and brain connectivity is crucial for both healthy and abnormal brain development. Despite the importance of this relationship, existing models fail to explain how growing axon bundles navigate the stress field within a folding brain or how this bidirectional and dynamic interaction shapes the resulting surface morphologies and connectivity patterns. Here, we propose the concept of “axon reorientation” and formulate a mechanical model to uncover the dynamic multiscale mechanics of the linkages between cortical folding and connectivity development. Simulations incorporating axon bundle reorientation and stress-induced growth reveal potential mechanical mechanisms that lead to higher axon bundle density in gyri (ridges) compared to sulci (valleys). In particular, the connectivity patterning resulting from cortical folding exhibits a strong dependence on the growth rate and mechanical properties of the navigating axon bundles. Model predictions are supported by in vivo diffusion tensor imaging of the human brain. 
    more » « less